Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode

نویسندگان

  • Pengtao Jing
  • Wenyu Ji
  • Qinghui Zeng
  • Di Li
  • Songnan Qu
  • Jia Wang
  • Dandan Zhang
چکیده

Efficient transparent quantum-dot light emitting diodes (QD-LEDs) are demonstrated by using a silver nanowire (AgNW) cathode. The devices are fabricated through a solution technique, not any vacuum processes are involved. Almost identical performance is obtained for both sides of the transparent device, which is primary due to the high transmittance of AgNW cathode. The maximum luminance (efficiency) for ITO and AgNW side is 25,040 cd/m(2) (5.6 cd/A) and 23,440 cd/m(2) (5.2 cd/A), respectively. The average specular transmittance of the device (involving the glass substrate) is over 60% in the visible range. This study indicates that AgNW electrodes can serve as a cost-effective, flexible alternative to ITO, and thereby improve the economic viability and mechanical stability of QD-LEDs. All the results suggest that this is an important progress toward producing transparent QD-LEDs based displays and lighting sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

III-V compound semiconductor nanostructures on silicon: Epitaxial growth, properties, and applications in light emitting diodes and lasers

Significant developments have occurred in the area of III-V compound semiconductor nanostructures. The scope of developments includes quantum dots and nanowires epitaxially grown on Si substrates, as well as their applications in light emitting diodes and lasers. Such nanoscale heterostructures exhibit remarkable structural, electrical, and optical properties. The highly effective lateral stres...

متن کامل

Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes.

We have investigated for the first time the impact of electron overflow on the performance of nanowire light-emitting diodes (LEDs) operating in the entire visible spectral range, wherein intrinsic white light emission is achieved from self-organized InGaN quantum dots embedded in defect-free GaN nanowires on a single chip. Through detailed temperature-dependent electroluminescence and simulati...

متن کامل

Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors

We report the first demonstration of flexible white phosphor-converted light emitting diodes (LEDs) based on p-n junction core/shell nitride nanowires. GaN nanowires containing seven radial In0.2Ga0.8N/GaN quantum wells were grown by metal-organic chemical vapor deposition on a sapphire substrate by a catalyst-free approach. To fabricate the flexible LED, the nanowires are embedded into a phosp...

متن کامل

Highly efficient and low voltage silver nanowire-based OLEDs employing a n-type hole injection layer.

Highly flexible and efficient silver nanowire-based organic light-emitting diodes (OLEDs) have been successfully fabricated by employing a n-type hole injection layer (HIL). The silver nanowire-based OLEDs without light outcoupling structures exhibited excellent device characteristics such as extremely low turn-on voltage (3.6 V) and high current and power efficiencies (44.5 cd A(-1) and 35.8 l...

متن کامل

Efficient vacuum-free-processed quantum dot light-emitting diodes with printable liquid metal cathodes.

Colloidal quantum dot light-emitting diodes (QLEDs) are recognized as promising candidates for next generation displays. QLEDs can be fabricated by low-cost solution processing except for the metal electrodes, which, in general, are deposited by costly vacuum evaporation. To be fully compatible with the low-cost solution process, we herein demonstrate vacuum-free and solvent-free fabrication of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015